Extensions 1→N→G→Q→1 with N=C23×3- 1+2 and Q=C2

Direct product G=N×Q with N=C23×3- 1+2 and Q=C2
dρLabelID
C24×3- 1+2144C2^4xES-(3,1)432,564

Semidirect products G=N:Q with N=C23×3- 1+2 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23×3- 1+2)⋊1C2 = C2×Dic9⋊C6φ: C2/C1C2 ⊆ Out C23×3- 1+272(C2^3xES-(3,1)):1C2432,379
(C23×3- 1+2)⋊2C2 = C23×C9⋊C6φ: C2/C1C2 ⊆ Out C23×3- 1+272(C2^3xES-(3,1)):2C2432,559
(C23×3- 1+2)⋊3C2 = C2×D4×3- 1+2φ: C2/C1C2 ⊆ Out C23×3- 1+272(C2^3xES-(3,1)):3C2432,405

Non-split extensions G=N.Q with N=C23×3- 1+2 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23×3- 1+2).1C2 = C62.27D6φ: C2/C1C2 ⊆ Out C23×3- 1+272(C2^3xES-(3,1)).1C2432,167
(C23×3- 1+2).2C2 = C22×C9⋊C12φ: C2/C1C2 ⊆ Out C23×3- 1+2144(C2^3xES-(3,1)).2C2432,378
(C23×3- 1+2).3C2 = C22⋊C4×3- 1+2φ: C2/C1C2 ⊆ Out C23×3- 1+272(C2^3xES-(3,1)).3C2432,205
(C23×3- 1+2).4C2 = C22×C4×3- 1+2φ: trivial image144(C2^3xES-(3,1)).4C2432,402

׿
×
𝔽